H(t)=-4.9t^2+24t+15

Simple and best practice solution for H(t)=-4.9t^2+24t+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+24t+15 equation:



(H)=-4.9H^2+24H+15
We move all terms to the left:
(H)-(-4.9H^2+24H+15)=0
We get rid of parentheses
4.9H^2-24H+H-15=0
We add all the numbers together, and all the variables
4.9H^2-23H-15=0
a = 4.9; b = -23; c = -15;
Δ = b2-4ac
Δ = -232-4·4.9·(-15)
Δ = 823
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{823}}{2*4.9}=\frac{23-\sqrt{823}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{823}}{2*4.9}=\frac{23+\sqrt{823}}{9.8} $

See similar equations:

| 15+15=-3(2x-10) | | x+500=2800 | | 2.3x=16.33 | | 7+|2x|=9 | | 3(2x+1)=3(x–1)-2(x–3) | | 5x-8x-15=-3x+7-15 | | |3a-3|=9 | | 62.5+0.5y=60 | | |s|=16 | | 6(2n+4)=6(4n+4)+7 | | 2(b+4)=-(3b+2) | | 3x-4=-(x-7) | | 17=2+5c | | 25x^2-20x^2=0 | | x/(14-x)=4/3 | | -2(5t-5)+5t=2t-9 | | 5p=7-5p=-7(p-3) | | a=2,225,000/(1.08)5 | | 4t=2t | | (7x-9)=(8x+12) | | Y=3x+3/4 | | 3x-22=88 | | x-(x/5)=100 | | 2^x+2^x+3=288 | | (3x-12)-(x-8)=0 | | (3x-12)+(x-8)=0 | | (x-4)^2-48=0 | | (2x+1)²+(x+1)²=6x+47 | | 5x-1+5=-12 | | 5x-1+5=12 | | 3+6=(3x+3) | | 22-p=7 |

Equations solver categories